(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2).


The TRS R consists of the following rules:

fold#3(insert_ord(x2), Nil) → Nil
fold#3(insert_ord(x6), Cons(x4, x2)) → insert_ord#2(x6, x4, fold#3(insert_ord(x6), x2))
cond_insert_ord_x_ys_1(True, x3, x2, x1) → Cons(x3, Cons(x2, x1))
cond_insert_ord_x_ys_1(False, x0, x5, x2) → Cons(x5, insert_ord#2(leq, x0, x2))
insert_ord#2(leq, x2, Nil) → Cons(x2, Nil)
insert_ord#2(leq, x6, Cons(x4, x2)) → cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2)
leq#2(0, x8) → True
leq#2(S(x12), 0) → False
leq#2(S(x4), S(x2)) → leq#2(x4, x2)
main(x3) → fold#3(insert_ord(leq), x3)

Rewrite Strategy: INNERMOST

(1) TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID) transformation)

Transformed TRS to weighted TRS

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2).


The TRS R consists of the following rules:

fold#3(insert_ord(x2), Nil) → Nil [1]
fold#3(insert_ord(x6), Cons(x4, x2)) → insert_ord#2(x6, x4, fold#3(insert_ord(x6), x2)) [1]
cond_insert_ord_x_ys_1(True, x3, x2, x1) → Cons(x3, Cons(x2, x1)) [1]
cond_insert_ord_x_ys_1(False, x0, x5, x2) → Cons(x5, insert_ord#2(leq, x0, x2)) [1]
insert_ord#2(leq, x2, Nil) → Cons(x2, Nil) [1]
insert_ord#2(leq, x6, Cons(x4, x2)) → cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) [1]
leq#2(0, x8) → True [1]
leq#2(S(x12), 0) → False [1]
leq#2(S(x4), S(x2)) → leq#2(x4, x2) [1]
main(x3) → fold#3(insert_ord(leq), x3) [1]

Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

fold#3(insert_ord(x2), Nil) → Nil [1]
fold#3(insert_ord(x6), Cons(x4, x2)) → insert_ord#2(x6, x4, fold#3(insert_ord(x6), x2)) [1]
cond_insert_ord_x_ys_1(True, x3, x2, x1) → Cons(x3, Cons(x2, x1)) [1]
cond_insert_ord_x_ys_1(False, x0, x5, x2) → Cons(x5, insert_ord#2(leq, x0, x2)) [1]
insert_ord#2(leq, x2, Nil) → Cons(x2, Nil) [1]
insert_ord#2(leq, x6, Cons(x4, x2)) → cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) [1]
leq#2(0, x8) → True [1]
leq#2(S(x12), 0) → False [1]
leq#2(S(x4), S(x2)) → leq#2(x4, x2) [1]
main(x3) → fold#3(insert_ord(leq), x3) [1]

The TRS has the following type information:
fold#3 :: insert_ord → Nil:Cons → Nil:Cons
insert_ord :: leq → insert_ord
Nil :: Nil:Cons
Cons :: 0:S → Nil:Cons → Nil:Cons
insert_ord#2 :: leq → 0:S → Nil:Cons → Nil:Cons
cond_insert_ord_x_ys_1 :: True:False → 0:S → 0:S → Nil:Cons → Nil:Cons
True :: True:False
False :: True:False
leq :: leq
leq#2 :: 0:S → 0:S → True:False
0 :: 0:S
S :: 0:S → 0:S
main :: Nil:Cons → Nil:Cons

Rewrite Strategy: INNERMOST

(5) CompletionProof (UPPER BOUND(ID) transformation)

The transformation into a RNTS is sound, since:

(a) The obligation is a constructor system where every type has a constant constructor,

(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:


main

(c) The following functions are completely defined:

leq#2
fold#3
insert_ord#2
cond_insert_ord_x_ys_1

Due to the following rules being added:

fold#3(v0, v1) → Nil [0]

And the following fresh constants:

const

(6) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

fold#3(insert_ord(x2), Nil) → Nil [1]
fold#3(insert_ord(x6), Cons(x4, x2)) → insert_ord#2(x6, x4, fold#3(insert_ord(x6), x2)) [1]
cond_insert_ord_x_ys_1(True, x3, x2, x1) → Cons(x3, Cons(x2, x1)) [1]
cond_insert_ord_x_ys_1(False, x0, x5, x2) → Cons(x5, insert_ord#2(leq, x0, x2)) [1]
insert_ord#2(leq, x2, Nil) → Cons(x2, Nil) [1]
insert_ord#2(leq, x6, Cons(x4, x2)) → cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) [1]
leq#2(0, x8) → True [1]
leq#2(S(x12), 0) → False [1]
leq#2(S(x4), S(x2)) → leq#2(x4, x2) [1]
main(x3) → fold#3(insert_ord(leq), x3) [1]
fold#3(v0, v1) → Nil [0]

The TRS has the following type information:
fold#3 :: insert_ord → Nil:Cons → Nil:Cons
insert_ord :: leq → insert_ord
Nil :: Nil:Cons
Cons :: 0:S → Nil:Cons → Nil:Cons
insert_ord#2 :: leq → 0:S → Nil:Cons → Nil:Cons
cond_insert_ord_x_ys_1 :: True:False → 0:S → 0:S → Nil:Cons → Nil:Cons
True :: True:False
False :: True:False
leq :: leq
leq#2 :: 0:S → 0:S → True:False
0 :: 0:S
S :: 0:S → 0:S
main :: Nil:Cons → Nil:Cons
const :: insert_ord

Rewrite Strategy: INNERMOST

(7) NarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Narrowed the inner basic terms of all right-hand sides by a single narrowing step.

(8) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

fold#3(insert_ord(x2), Nil) → Nil [1]
fold#3(insert_ord(x6), Cons(x4, Nil)) → insert_ord#2(x6, x4, Nil) [2]
fold#3(insert_ord(x6), Cons(x4, Cons(x4', x2'))) → insert_ord#2(x6, x4, insert_ord#2(x6, x4', fold#3(insert_ord(x6), x2'))) [2]
fold#3(insert_ord(x6), Cons(x4, x2)) → insert_ord#2(x6, x4, Nil) [1]
cond_insert_ord_x_ys_1(True, x3, x2, x1) → Cons(x3, Cons(x2, x1)) [1]
cond_insert_ord_x_ys_1(False, x0, x5, x2) → Cons(x5, insert_ord#2(leq, x0, x2)) [1]
insert_ord#2(leq, x2, Nil) → Cons(x2, Nil) [1]
insert_ord#2(leq, 0, Cons(x4, x2)) → cond_insert_ord_x_ys_1(True, 0, x4, x2) [2]
insert_ord#2(leq, S(x12'), Cons(0, x2)) → cond_insert_ord_x_ys_1(False, S(x12'), 0, x2) [2]
insert_ord#2(leq, S(x4''), Cons(S(x2''), x2)) → cond_insert_ord_x_ys_1(leq#2(x4'', x2''), S(x4''), S(x2''), x2) [2]
leq#2(0, x8) → True [1]
leq#2(S(x12), 0) → False [1]
leq#2(S(x4), S(x2)) → leq#2(x4, x2) [1]
main(x3) → fold#3(insert_ord(leq), x3) [1]
fold#3(v0, v1) → Nil [0]

The TRS has the following type information:
fold#3 :: insert_ord → Nil:Cons → Nil:Cons
insert_ord :: leq → insert_ord
Nil :: Nil:Cons
Cons :: 0:S → Nil:Cons → Nil:Cons
insert_ord#2 :: leq → 0:S → Nil:Cons → Nil:Cons
cond_insert_ord_x_ys_1 :: True:False → 0:S → 0:S → Nil:Cons → Nil:Cons
True :: True:False
False :: True:False
leq :: leq
leq#2 :: 0:S → 0:S → True:False
0 :: 0:S
S :: 0:S → 0:S
main :: Nil:Cons → Nil:Cons
const :: insert_ord

Rewrite Strategy: INNERMOST

(9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID) transformation)

Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction.
The constant constructors are abstracted as follows:

Nil => 0
True => 1
False => 0
leq => 0
0 => 0
const => 0

(10) Obligation:

Complexity RNTS consisting of the following rules:

cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + x3 + (1 + x2 + x1) :|: x1 >= 0, z = 1, z' = x3, z1 = x1, z'' = x2, x3 >= 0, x2 >= 0
cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + x5 + insert_ord#2(0, x0, x2) :|: x0 >= 0, x5 >= 0, z1 = x2, z'' = x5, z = 0, x2 >= 0, z' = x0
fold#3(z, z') -{ 2 }→ insert_ord#2(x6, x4, insert_ord#2(x6, x4', fold#3(1 + x6, x2'))) :|: x2' >= 0, x4 >= 0, z = 1 + x6, x6 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0
fold#3(z, z') -{ 2 }→ insert_ord#2(x6, x4, 0) :|: x4 >= 0, z = 1 + x6, x6 >= 0, z' = 1 + x4 + 0
fold#3(z, z') -{ 1 }→ insert_ord#2(x6, x4, 0) :|: x4 >= 0, z = 1 + x6, z' = 1 + x4 + x2, x6 >= 0, x2 >= 0
fold#3(z, z') -{ 1 }→ 0 :|: z = 1 + x2, x2 >= 0, z' = 0
fold#3(z, z') -{ 0 }→ 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(leq#2(x4'', x2''), 1 + x4'', 1 + x2'', x2) :|: x4'' >= 0, z'' = 1 + (1 + x2'') + x2, z' = 1 + x4'', z = 0, x2'' >= 0, x2 >= 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(0, 1 + x12', 0, x2) :|: z'' = 1 + 0 + x2, z' = 1 + x12', x12' >= 0, z = 0, x2 >= 0
insert_ord#2(z, z', z'') -{ 1 }→ 1 + x2 + 0 :|: z'' = 0, z' = x2, z = 0, x2 >= 0
leq#2(z, z') -{ 1 }→ leq#2(x4, x2) :|: x4 >= 0, z' = 1 + x2, z = 1 + x4, x2 >= 0
leq#2(z, z') -{ 1 }→ 1 :|: x8 >= 0, z = 0, z' = x8
leq#2(z, z') -{ 1 }→ 0 :|: z = 1 + x12, x12 >= 0, z' = 0
main(z) -{ 1 }→ fold#3(1 + 0, x3) :|: z = x3, x3 >= 0

(11) SimplificationProof (BOTH BOUNDS(ID, ID) transformation)

Simplified the RNTS by moving equalities from the constraints into the right-hand sides.

(12) Obligation:

Complexity RNTS consisting of the following rules:

cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0
cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0
fold#3(z, z') -{ 2 }→ insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0
fold#3(z, z') -{ 1 }→ insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0
fold#3(z, z') -{ 2 }→ insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0
fold#3(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
fold#3(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(leq#2(z' - 1, x2''), 1 + (z' - 1), 1 + x2'', x2) :|: z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0
insert_ord#2(z, z', z'') -{ 1 }→ 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0
leq#2(z, z') -{ 1 }→ leq#2(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
leq#2(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
leq#2(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
main(z) -{ 1 }→ fold#3(1 + 0, z) :|: z >= 0

(13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID) transformation)

Found the following analysis order by SCC decomposition:

{ leq#2 }
{ cond_insert_ord_x_ys_1, insert_ord#2 }
{ fold#3 }
{ main }

(14) Obligation:

Complexity RNTS consisting of the following rules:

cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0
cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0
fold#3(z, z') -{ 2 }→ insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0
fold#3(z, z') -{ 1 }→ insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0
fold#3(z, z') -{ 2 }→ insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0
fold#3(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
fold#3(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(leq#2(z' - 1, x2''), 1 + (z' - 1), 1 + x2'', x2) :|: z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0
insert_ord#2(z, z', z'') -{ 1 }→ 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0
leq#2(z, z') -{ 1 }→ leq#2(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
leq#2(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
leq#2(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
main(z) -{ 1 }→ fold#3(1 + 0, z) :|: z >= 0

Function symbols to be analyzed: {leq#2}, {cond_insert_ord_x_ys_1,insert_ord#2}, {fold#3}, {main}

(15) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: leq#2
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(16) Obligation:

Complexity RNTS consisting of the following rules:

cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0
cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0
fold#3(z, z') -{ 2 }→ insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0
fold#3(z, z') -{ 1 }→ insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0
fold#3(z, z') -{ 2 }→ insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0
fold#3(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
fold#3(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(leq#2(z' - 1, x2''), 1 + (z' - 1), 1 + x2'', x2) :|: z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0
insert_ord#2(z, z', z'') -{ 1 }→ 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0
leq#2(z, z') -{ 1 }→ leq#2(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
leq#2(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
leq#2(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
main(z) -{ 1 }→ fold#3(1 + 0, z) :|: z >= 0

Function symbols to be analyzed: {leq#2}, {cond_insert_ord_x_ys_1,insert_ord#2}, {fold#3}, {main}
Previous analysis results are:
leq#2: runtime: ?, size: O(1) [1]

(17) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using PUBS for: leq#2
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 1 + z'

(18) Obligation:

Complexity RNTS consisting of the following rules:

cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0
cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0
fold#3(z, z') -{ 2 }→ insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0
fold#3(z, z') -{ 1 }→ insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0
fold#3(z, z') -{ 2 }→ insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0
fold#3(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
fold#3(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(leq#2(z' - 1, x2''), 1 + (z' - 1), 1 + x2'', x2) :|: z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0
insert_ord#2(z, z', z'') -{ 1 }→ 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0
leq#2(z, z') -{ 1 }→ leq#2(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
leq#2(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
leq#2(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
main(z) -{ 1 }→ fold#3(1 + 0, z) :|: z >= 0

Function symbols to be analyzed: {cond_insert_ord_x_ys_1,insert_ord#2}, {fold#3}, {main}
Previous analysis results are:
leq#2: runtime: O(n1) [1 + z'], size: O(1) [1]

(19) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(20) Obligation:

Complexity RNTS consisting of the following rules:

cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0
cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0
fold#3(z, z') -{ 2 }→ insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0
fold#3(z, z') -{ 1 }→ insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0
fold#3(z, z') -{ 2 }→ insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0
fold#3(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
fold#3(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
insert_ord#2(z, z', z'') -{ 3 + x2'' }→ cond_insert_ord_x_ys_1(s, 1 + (z' - 1), 1 + x2'', x2) :|: s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0
insert_ord#2(z, z', z'') -{ 1 }→ 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0
leq#2(z, z') -{ 1 + z' }→ s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
leq#2(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
leq#2(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
main(z) -{ 1 }→ fold#3(1 + 0, z) :|: z >= 0

Function symbols to be analyzed: {cond_insert_ord_x_ys_1,insert_ord#2}, {fold#3}, {main}
Previous analysis results are:
leq#2: runtime: O(n1) [1 + z'], size: O(1) [1]

(21) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: cond_insert_ord_x_ys_1
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 2 + z' + z'' + z1

Computed SIZE bound using CoFloCo for: insert_ord#2
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 1 + z' + z''

(22) Obligation:

Complexity RNTS consisting of the following rules:

cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0
cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0
fold#3(z, z') -{ 2 }→ insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0
fold#3(z, z') -{ 1 }→ insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0
fold#3(z, z') -{ 2 }→ insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0
fold#3(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
fold#3(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
insert_ord#2(z, z', z'') -{ 3 + x2'' }→ cond_insert_ord_x_ys_1(s, 1 + (z' - 1), 1 + x2'', x2) :|: s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0
insert_ord#2(z, z', z'') -{ 1 }→ 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0
leq#2(z, z') -{ 1 + z' }→ s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
leq#2(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
leq#2(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
main(z) -{ 1 }→ fold#3(1 + 0, z) :|: z >= 0

Function symbols to be analyzed: {cond_insert_ord_x_ys_1,insert_ord#2}, {fold#3}, {main}
Previous analysis results are:
leq#2: runtime: O(n1) [1 + z'], size: O(1) [1]
cond_insert_ord_x_ys_1: runtime: ?, size: O(n1) [2 + z' + z'' + z1]
insert_ord#2: runtime: ?, size: O(n1) [1 + z' + z'']

(23) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using CoFloCo for: cond_insert_ord_x_ys_1
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 4 + 10·z1

Computed RUNTIME bound using CoFloCo for: insert_ord#2
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 13 + 10·z''

(24) Obligation:

Complexity RNTS consisting of the following rules:

cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0
cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0
fold#3(z, z') -{ 2 }→ insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0
fold#3(z, z') -{ 1 }→ insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0
fold#3(z, z') -{ 2 }→ insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0
fold#3(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
fold#3(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
insert_ord#2(z, z', z'') -{ 3 + x2'' }→ cond_insert_ord_x_ys_1(s, 1 + (z' - 1), 1 + x2'', x2) :|: s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0
insert_ord#2(z, z', z'') -{ 2 }→ cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0
insert_ord#2(z, z', z'') -{ 1 }→ 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0
leq#2(z, z') -{ 1 + z' }→ s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
leq#2(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
leq#2(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
main(z) -{ 1 }→ fold#3(1 + 0, z) :|: z >= 0

Function symbols to be analyzed: {fold#3}, {main}
Previous analysis results are:
leq#2: runtime: O(n1) [1 + z'], size: O(1) [1]
cond_insert_ord_x_ys_1: runtime: O(n1) [4 + 10·z1], size: O(n1) [2 + z' + z'' + z1]
insert_ord#2: runtime: O(n1) [13 + 10·z''], size: O(n1) [1 + z' + z'']

(25) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(26) Obligation:

Complexity RNTS consisting of the following rules:

cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0
cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 14 + 10·z1 }→ 1 + z'' + s2 :|: s2 >= 0, s2 <= 1 * z' + 1 * z1 + 1, z' >= 0, z'' >= 0, z = 0, z1 >= 0
fold#3(z, z') -{ 15 }→ s'' :|: s'' >= 0, s'' <= 1 * (z' - 1) + 1 * 0 + 1, z' - 1 >= 0, z - 1 >= 0
fold#3(z, z') -{ 14 }→ s1 :|: s1 >= 0, s1 <= 1 * x4 + 1 * 0 + 1, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0
fold#3(z, z') -{ 2 }→ insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0
fold#3(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
fold#3(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
insert_ord#2(z, z', z'') -{ 6 + 10·x2 }→ s3 :|: s3 >= 0, s3 <= 1 * 0 + 1 * x4 + 1 * x2 + 2, x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0
insert_ord#2(z, z', z'') -{ -4 + 10·z'' }→ s4 :|: s4 >= 0, s4 <= 1 * (1 + (z' - 1)) + 1 * 0 + 1 * (z'' - 1) + 2, z' - 1 >= 0, z = 0, z'' - 1 >= 0
insert_ord#2(z, z', z'') -{ 7 + 10·x2 + x2'' }→ s5 :|: s5 >= 0, s5 <= 1 * (1 + (z' - 1)) + 1 * (1 + x2'') + 1 * x2 + 2, s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0
insert_ord#2(z, z', z'') -{ 1 }→ 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0
leq#2(z, z') -{ 1 + z' }→ s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
leq#2(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
leq#2(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
main(z) -{ 1 }→ fold#3(1 + 0, z) :|: z >= 0

Function symbols to be analyzed: {fold#3}, {main}
Previous analysis results are:
leq#2: runtime: O(n1) [1 + z'], size: O(1) [1]
cond_insert_ord_x_ys_1: runtime: O(n1) [4 + 10·z1], size: O(n1) [2 + z' + z'' + z1]
insert_ord#2: runtime: O(n1) [13 + 10·z''], size: O(n1) [1 + z' + z'']

(27) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: fold#3
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: z'

(28) Obligation:

Complexity RNTS consisting of the following rules:

cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0
cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 14 + 10·z1 }→ 1 + z'' + s2 :|: s2 >= 0, s2 <= 1 * z' + 1 * z1 + 1, z' >= 0, z'' >= 0, z = 0, z1 >= 0
fold#3(z, z') -{ 15 }→ s'' :|: s'' >= 0, s'' <= 1 * (z' - 1) + 1 * 0 + 1, z' - 1 >= 0, z - 1 >= 0
fold#3(z, z') -{ 14 }→ s1 :|: s1 >= 0, s1 <= 1 * x4 + 1 * 0 + 1, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0
fold#3(z, z') -{ 2 }→ insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0
fold#3(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
fold#3(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
insert_ord#2(z, z', z'') -{ 6 + 10·x2 }→ s3 :|: s3 >= 0, s3 <= 1 * 0 + 1 * x4 + 1 * x2 + 2, x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0
insert_ord#2(z, z', z'') -{ -4 + 10·z'' }→ s4 :|: s4 >= 0, s4 <= 1 * (1 + (z' - 1)) + 1 * 0 + 1 * (z'' - 1) + 2, z' - 1 >= 0, z = 0, z'' - 1 >= 0
insert_ord#2(z, z', z'') -{ 7 + 10·x2 + x2'' }→ s5 :|: s5 >= 0, s5 <= 1 * (1 + (z' - 1)) + 1 * (1 + x2'') + 1 * x2 + 2, s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0
insert_ord#2(z, z', z'') -{ 1 }→ 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0
leq#2(z, z') -{ 1 + z' }→ s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
leq#2(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
leq#2(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
main(z) -{ 1 }→ fold#3(1 + 0, z) :|: z >= 0

Function symbols to be analyzed: {fold#3}, {main}
Previous analysis results are:
leq#2: runtime: O(n1) [1 + z'], size: O(1) [1]
cond_insert_ord_x_ys_1: runtime: O(n1) [4 + 10·z1], size: O(n1) [2 + z' + z'' + z1]
insert_ord#2: runtime: O(n1) [13 + 10·z''], size: O(n1) [1 + z' + z'']
fold#3: runtime: ?, size: O(n1) [z']

(29) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using CoFloCo for: fold#3
after applying outer abstraction to obtain an ITS,
resulting in: O(n2) with polynomial bound: 17 + 22·z' + 20·z'2

(30) Obligation:

Complexity RNTS consisting of the following rules:

cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0
cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 14 + 10·z1 }→ 1 + z'' + s2 :|: s2 >= 0, s2 <= 1 * z' + 1 * z1 + 1, z' >= 0, z'' >= 0, z = 0, z1 >= 0
fold#3(z, z') -{ 15 }→ s'' :|: s'' >= 0, s'' <= 1 * (z' - 1) + 1 * 0 + 1, z' - 1 >= 0, z - 1 >= 0
fold#3(z, z') -{ 14 }→ s1 :|: s1 >= 0, s1 <= 1 * x4 + 1 * 0 + 1, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0
fold#3(z, z') -{ 2 }→ insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0
fold#3(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
fold#3(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
insert_ord#2(z, z', z'') -{ 6 + 10·x2 }→ s3 :|: s3 >= 0, s3 <= 1 * 0 + 1 * x4 + 1 * x2 + 2, x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0
insert_ord#2(z, z', z'') -{ -4 + 10·z'' }→ s4 :|: s4 >= 0, s4 <= 1 * (1 + (z' - 1)) + 1 * 0 + 1 * (z'' - 1) + 2, z' - 1 >= 0, z = 0, z'' - 1 >= 0
insert_ord#2(z, z', z'') -{ 7 + 10·x2 + x2'' }→ s5 :|: s5 >= 0, s5 <= 1 * (1 + (z' - 1)) + 1 * (1 + x2'') + 1 * x2 + 2, s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0
insert_ord#2(z, z', z'') -{ 1 }→ 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0
leq#2(z, z') -{ 1 + z' }→ s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
leq#2(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
leq#2(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
main(z) -{ 1 }→ fold#3(1 + 0, z) :|: z >= 0

Function symbols to be analyzed: {main}
Previous analysis results are:
leq#2: runtime: O(n1) [1 + z'], size: O(1) [1]
cond_insert_ord_x_ys_1: runtime: O(n1) [4 + 10·z1], size: O(n1) [2 + z' + z'' + z1]
insert_ord#2: runtime: O(n1) [13 + 10·z''], size: O(n1) [1 + z' + z'']
fold#3: runtime: O(n2) [17 + 22·z' + 20·z'2], size: O(n1) [z']

(31) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(32) Obligation:

Complexity RNTS consisting of the following rules:

cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0
cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 14 + 10·z1 }→ 1 + z'' + s2 :|: s2 >= 0, s2 <= 1 * z' + 1 * z1 + 1, z' >= 0, z'' >= 0, z = 0, z1 >= 0
fold#3(z, z') -{ 15 }→ s'' :|: s'' >= 0, s'' <= 1 * (z' - 1) + 1 * 0 + 1, z' - 1 >= 0, z - 1 >= 0
fold#3(z, z') -{ 14 }→ s1 :|: s1 >= 0, s1 <= 1 * x4 + 1 * 0 + 1, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0
fold#3(z, z') -{ 45 + 10·s6 + 10·s7 + 22·x2' + 20·x2'2 }→ s8 :|: s6 >= 0, s6 <= 1 * x2', s7 >= 0, s7 <= 1 * x4' + 1 * s6 + 1, s8 >= 0, s8 <= 1 * x4 + 1 * s7 + 1, x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0
fold#3(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
fold#3(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
insert_ord#2(z, z', z'') -{ 6 + 10·x2 }→ s3 :|: s3 >= 0, s3 <= 1 * 0 + 1 * x4 + 1 * x2 + 2, x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0
insert_ord#2(z, z', z'') -{ -4 + 10·z'' }→ s4 :|: s4 >= 0, s4 <= 1 * (1 + (z' - 1)) + 1 * 0 + 1 * (z'' - 1) + 2, z' - 1 >= 0, z = 0, z'' - 1 >= 0
insert_ord#2(z, z', z'') -{ 7 + 10·x2 + x2'' }→ s5 :|: s5 >= 0, s5 <= 1 * (1 + (z' - 1)) + 1 * (1 + x2'') + 1 * x2 + 2, s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0
insert_ord#2(z, z', z'') -{ 1 }→ 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0
leq#2(z, z') -{ 1 + z' }→ s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
leq#2(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
leq#2(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
main(z) -{ 18 + 22·z + 20·z2 }→ s9 :|: s9 >= 0, s9 <= 1 * z, z >= 0

Function symbols to be analyzed: {main}
Previous analysis results are:
leq#2: runtime: O(n1) [1 + z'], size: O(1) [1]
cond_insert_ord_x_ys_1: runtime: O(n1) [4 + 10·z1], size: O(n1) [2 + z' + z'' + z1]
insert_ord#2: runtime: O(n1) [13 + 10·z''], size: O(n1) [1 + z' + z'']
fold#3: runtime: O(n2) [17 + 22·z' + 20·z'2], size: O(n1) [z']

(33) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: main
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: z

(34) Obligation:

Complexity RNTS consisting of the following rules:

cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0
cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 14 + 10·z1 }→ 1 + z'' + s2 :|: s2 >= 0, s2 <= 1 * z' + 1 * z1 + 1, z' >= 0, z'' >= 0, z = 0, z1 >= 0
fold#3(z, z') -{ 15 }→ s'' :|: s'' >= 0, s'' <= 1 * (z' - 1) + 1 * 0 + 1, z' - 1 >= 0, z - 1 >= 0
fold#3(z, z') -{ 14 }→ s1 :|: s1 >= 0, s1 <= 1 * x4 + 1 * 0 + 1, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0
fold#3(z, z') -{ 45 + 10·s6 + 10·s7 + 22·x2' + 20·x2'2 }→ s8 :|: s6 >= 0, s6 <= 1 * x2', s7 >= 0, s7 <= 1 * x4' + 1 * s6 + 1, s8 >= 0, s8 <= 1 * x4 + 1 * s7 + 1, x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0
fold#3(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
fold#3(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
insert_ord#2(z, z', z'') -{ 6 + 10·x2 }→ s3 :|: s3 >= 0, s3 <= 1 * 0 + 1 * x4 + 1 * x2 + 2, x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0
insert_ord#2(z, z', z'') -{ -4 + 10·z'' }→ s4 :|: s4 >= 0, s4 <= 1 * (1 + (z' - 1)) + 1 * 0 + 1 * (z'' - 1) + 2, z' - 1 >= 0, z = 0, z'' - 1 >= 0
insert_ord#2(z, z', z'') -{ 7 + 10·x2 + x2'' }→ s5 :|: s5 >= 0, s5 <= 1 * (1 + (z' - 1)) + 1 * (1 + x2'') + 1 * x2 + 2, s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0
insert_ord#2(z, z', z'') -{ 1 }→ 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0
leq#2(z, z') -{ 1 + z' }→ s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
leq#2(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
leq#2(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
main(z) -{ 18 + 22·z + 20·z2 }→ s9 :|: s9 >= 0, s9 <= 1 * z, z >= 0

Function symbols to be analyzed: {main}
Previous analysis results are:
leq#2: runtime: O(n1) [1 + z'], size: O(1) [1]
cond_insert_ord_x_ys_1: runtime: O(n1) [4 + 10·z1], size: O(n1) [2 + z' + z'' + z1]
insert_ord#2: runtime: O(n1) [13 + 10·z''], size: O(n1) [1 + z' + z'']
fold#3: runtime: O(n2) [17 + 22·z' + 20·z'2], size: O(n1) [z']
main: runtime: ?, size: O(n1) [z]

(35) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using KoAT for: main
after applying outer abstraction to obtain an ITS,
resulting in: O(n2) with polynomial bound: 18 + 22·z + 20·z2

(36) Obligation:

Complexity RNTS consisting of the following rules:

cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }→ 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0
cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 14 + 10·z1 }→ 1 + z'' + s2 :|: s2 >= 0, s2 <= 1 * z' + 1 * z1 + 1, z' >= 0, z'' >= 0, z = 0, z1 >= 0
fold#3(z, z') -{ 15 }→ s'' :|: s'' >= 0, s'' <= 1 * (z' - 1) + 1 * 0 + 1, z' - 1 >= 0, z - 1 >= 0
fold#3(z, z') -{ 14 }→ s1 :|: s1 >= 0, s1 <= 1 * x4 + 1 * 0 + 1, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0
fold#3(z, z') -{ 45 + 10·s6 + 10·s7 + 22·x2' + 20·x2'2 }→ s8 :|: s6 >= 0, s6 <= 1 * x2', s7 >= 0, s7 <= 1 * x4' + 1 * s6 + 1, s8 >= 0, s8 <= 1 * x4 + 1 * s7 + 1, x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0
fold#3(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
fold#3(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
insert_ord#2(z, z', z'') -{ 6 + 10·x2 }→ s3 :|: s3 >= 0, s3 <= 1 * 0 + 1 * x4 + 1 * x2 + 2, x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0
insert_ord#2(z, z', z'') -{ -4 + 10·z'' }→ s4 :|: s4 >= 0, s4 <= 1 * (1 + (z' - 1)) + 1 * 0 + 1 * (z'' - 1) + 2, z' - 1 >= 0, z = 0, z'' - 1 >= 0
insert_ord#2(z, z', z'') -{ 7 + 10·x2 + x2'' }→ s5 :|: s5 >= 0, s5 <= 1 * (1 + (z' - 1)) + 1 * (1 + x2'') + 1 * x2 + 2, s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0
insert_ord#2(z, z', z'') -{ 1 }→ 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0
leq#2(z, z') -{ 1 + z' }→ s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
leq#2(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
leq#2(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
main(z) -{ 18 + 22·z + 20·z2 }→ s9 :|: s9 >= 0, s9 <= 1 * z, z >= 0

Function symbols to be analyzed:
Previous analysis results are:
leq#2: runtime: O(n1) [1 + z'], size: O(1) [1]
cond_insert_ord_x_ys_1: runtime: O(n1) [4 + 10·z1], size: O(n1) [2 + z' + z'' + z1]
insert_ord#2: runtime: O(n1) [13 + 10·z''], size: O(n1) [1 + z' + z'']
fold#3: runtime: O(n2) [17 + 22·z' + 20·z'2], size: O(n1) [z']
main: runtime: O(n2) [18 + 22·z + 20·z2], size: O(n1) [z]

(37) FinalProof (EQUIVALENT transformation)

Computed overall runtime complexity

(38) BOUNDS(1, n^2)